
Tracking the
Effectiveness of

Usability Evaluation Methods

Bonnie E. John & Steven J. Marks*

12 August 1996
CMU-HCII-96-102

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

*Standard Microsystems Corporation
Irvine, CA 92718

Also appears as Computer Science Technical Report
CMU-CS-96-160

19961101 032
Work on this paper by Bonnie John was supported by the Advanced Research Projects
Agency, DoD, and monitored by the Office of Naval Research under contract N00014-93-
1-0934. The views and conclusions contained in this document are those of the author and
should not be interpreted as representing the official policies, either expressed or implied,
of the Office of Naval Research, NCCOSC, the Advanced Research Projects Agency, or
the U. S. Government.

Bonnie John is associated with the Human-Computer Interaction Institute and the
Departments of Computer Science and Psychology at Carnegie Mellon University.

DISTRIBUTION STATEMENT A
—Hi in —I—i.— mil. ... mi in ■■ .ill II———■—

Approved for public release;
Distribution Unlimited WTC QUALITY INSPECTED 4

Keywords: usability evaluation methods, Claims Analysis, Cognitive Walkthrough,
GOMS, Heuristic Evaluation, User Action Notation, usability engineering

John & Marks p. 1
Tracking the Effectiveness of Usability Evaluation Methods

Abstract

We present a case study that tracks usability problems predicted with six usability
evaluation methods (Claims Analysis, Cognitive Walkthrough, GOMS, Heuristic
Evaluation, User Action Notation, and simply reading the specification) through a
development process. We assess the methods' predictive power by comparing the
predictions to the results of user tests. We assess the methods' persuasive power by seeing
how many problems led to changes in the implemented code. We assess design-change
effectiveness by user testing the resulting new versions of the system. We conclude that
predictive methods are not as effective as the HCI field would like and discuss directions
for future research.

1. Introduction

Usability evaluation methods (UEMs) have been developed that can be used at the
specification stage of design (e.g., John & Kieras, in press; Nielsen & Mack, 1994). As
these techniques proliferate, developers want to know which they should use for their
particular design situations, instructors want to know which they should teach to their
students, and researchers want to know which methods need further development and
where their research efforts could have the most effect.

To these ends, most empirical work to date has focused on assessing the predictive power
of UEMs. That is, does a UEM predict usability problems that users actually encounter?
Some techniques have been extensively tested in the laboratory and the field (e.g., GOMS,
John & Kieras, in press); others have yet to be systematically evaluated. There have been a
few attempts to compare the predictive power of different UEMs with experiments (but
methodological flaws make their conclusions suspect, Gray & Salzman, 1996). Case
studies also provide information about the predictive power of techniques in specific
circumstances (e.g., John & Mashyna, in press; John & Packer, 1995).

Although predictive power is an important aspect of UEMs, there are other aspects that
contribute to their effectiveness in a development process. A UEM must express problems,
and the evidence for them, in ways that motivate developers to change the code. A UEM
should also lead to design changes that actually fix the problem. For most UEMs,
research has not produced any measures of these other aspects of effectiveness. The
purpose of this paper is to present some results for these other dimensions and examine
implications for future UEM research.

1.1. An Effectiveness Tree

Figure 1 shows an effectiveness tree for predicted usability problems1. Any usability
problem predicted before a system is built can either occur to users ofthat system or not
(observed or not observed). This measure is the predictive power. Typically, this
information is not known in a normal development process, but has been studied by HCI
researchers as discussed above.

1 The effectiveness tree was introduced in an unpublished senior thesis (Marks, 1996).

John & Marks
Tracking the Effectiveness of Usability Evaluation Methods

p. 2

Changed

Observed

Fewer Problems

Same Problems

More Problems

Not Changed

Predicted
Usability
Problem

Changed Same Problems

Not Observed \
More Problems

Not Changed

01 - Effective
change

02 - Wasted
effort

03 - Costly in effort
and quality

04 - Missed
opportunity

05 - Wasted
effort

06 - Costly in effort
and quality

07 - Wasted
effort

Predictive
Power

Persuasive
Power

Design-
Change

Effectiveness

Figure 1. An effectiveness tree.

Any predicted usability problem can either motivate the development team to change the
code or not (changed or not changed).2 This motivation could have many causes. For
instance, a UEM may have demonstrated a high predictive power for similar products and
the development team may have come to believe its predictions. Even without a successful
history, a UEM may provide evidence for the problem in a form that capitalizes on
developers' knowledge and process, making it easy to incorporate. We call this measure
persuasive power. Other factors besides the persuasiveness of the UEM come into play at
this time, e.g., how difficult it is to change the system, release deadlines, and available
staff. However, without some degree of persuasiveness, development teams will never
expend any effort to change a system they had considered good enough to specify in the
first place.

2 The lines from Observed/Not Observed to Changed/Not Changed in the effectiveness tree have no
arrowheads, indicating that they are not causally connected. In the normal development process, the
development team does not implement an original specification and observe real-world use before deciding
to make a change to the original specification. It bases that decision on the evidence provided by a UEM
alone.

John & Marks p. 3
Tracking the Effectiveness of Usability Evaluation Methods

After deciding to change the system, the development team must decide exactly what
changes to make. Some UEMs make design suggestions; some simply identify the
problem leaving development teams to conceive of the change. If a UEM suggests a
change, the development team decides to adopt it or think of something else. Ultimately,
the implemented change may reduce the number of problems users experience, leave
performance the same, or introduce more problems than before. We call this measure
design-change effectiveness.

The most desirable outcome is the top path through this tree (outcome o1). A predicted
usability problem would actually be observed in real-world use if not fixed, it provides
motivation for the development team to change the code, and the change they implement
actually fixes the problem. Disastrous outcomes are o3 and 06, where a predicted usability
problem persuades the development team to make a change, but the change introduces
usability problems that result in worse performance. This is particularly egregious for 06,
where mere was no observable problem in the original system. These outcomes take time
and effort and result in an inferior product. The other outcomes may be considered less
severe. 04 is a missed opportunity to improve the system. 02, o5 and o7 are simply
wasted effort.

In the remainder of this paper, we will demonstrate the use of an effectiveness tree by
tracking 54 usability problems, predicted with several different UEMs, through a
development process. Section 2 presents how predicted usability problems were
generated. Section 3 shows how these problems were addressed by development. Section
4 describes our usability tests. Section 5 gives the procedure for tracking the predicted
problems. Finally, we present the results, argue for and against their generality, and
discuss their implications for future HCI research.

2. Predicting Usability Problems3

2.1. Participants

Six analysts participated in this study. Each analyst chose a UEM based on an introductory
lecture on evaluation methods (Butler, Jacob & John, 1994), learned it from the literature,
and used it to evaluate a specification of a multi-media authoring tool called the
VolumeViewBuilder (henceforth, Builder). The analysts received course credit for
participating in this case study.

The analyst using Claims Analysis (CA) had a bachelor's degree in electrical engineering
and fine art. He was skilled in six programming languages, had commercial experience as
a programmer and was an engineering doctoral student at Carnegie Mellon University. The
analyst using Cognitive Walkthrough (CW) had a masters in computer science, was skilled
in two programming languages, had commercial experience as a programmer, and was a
staff programmer in the CS department. The analyst using GOMS had a masters in
architecture, was skilled in three programming languages, had commercial experience as a
programmer, and was a doctoral student in architecture. The analyst using Heuristic
Evaluation (HE) had a masters in English, was skilled in two programming languages, had

3 More details about this analysis situation can be found in John & Packer, 1995 and John & Machyna, in
press. Those papers report data from the CW analyst's diary only, but the analysis situation is the same.

John & Marks
Tracking the Effectiveness of Usability Evaluation Methods

p. 4

no commercial experience in software development, and was a doctoral student in rhetoric.
The analyst using User Action Notation (UAN) had a bachelors in CS, was skilled in three
programming languages, had commercial experience as a programmer, had taken an
undergraduate HCI course and had corporate training in how to use guidelines, and was a
masters student in software engineering. The analyst who used a baseline condition, just
reading the specification repeatedly, was skilled in one programming language, was a third-
year undergraduate CS major, had no commercial experience, and had recently taken an
undergraduate HCI course.

2.2. Materials and Procedure

The analysts were given two documents with which to do their analyses: the 35-page user
interface specification of the ACSE multimedia authoring system, Figure 2, (Gallagher &
Meter, 1993) and a 55-page target multimedia document (Pane, Corbett & John, 1996).
They were also given two forms to fill out as they did their analyses: a diary form (adapted
from Rieman, 1993) and a problem description report (PDR, adapted from Jeffries, Miller,
Wharton & Uyeda, 1991).

Drosophila
Introduction

Normal Develop...
Early Nuclear Div.,
Syneytial Blastod..
Late Syneyetial...
Cellulanzation
Syneytial Blastod..
Pol* Cells

Performing Exp...

Performing Exp...

Full Simulation

Resizes the
Glossarg Pane

|Normal Development of Drosophila]

Glossary

Drosophila:
Known as drosophila
melanogaster, this
is the common fruit
fly.

Zygote:
Another term for
embryo.

The following figure [Figure 1} is a computer animation of the
early nuclear divisions of the drosophila embryo (jygote).To
run the animation, position the mouse pointer over the movie-
strip icon and click the mouse button. Theanimationvill
automatically execute. Please note that the slider that appears
beneath the animation during execution can be used to execute
the animation forward or in reverse. Clicking the arrows to
the right of the slider enables you to execute the animation
step-bu-step; either forward or in reverse.

Builder Positions
Frames for Text,
PICTs, ete.

Symbol Denotes an
Unlocked Frame

kBicoidDiffusionRatio ■ 0.88;

AddRuM GeneList [tBfeoM], eBieoidMRNA, 0, 1.0)

HI 3a I of 15 a

Figure 2. Example of an illustration in Volume View
Interface Design (Gallagher & Meter, 1993, p. 16, reprinted
by permission). In that document, this is a full-page
illustration of the screen of the Builder application.

John & Marks p. 5
Tracking the Effectiveness of Usability Evaluation Methods

The analysts worked on their own for an elapsed time of ten weeks, filling out the diaries
and PDRs as they worked. They met together (with the first author) for about an hour once
or twice a week to discuss the analysis process (not the content of the analyses). That is,
they discussed problems getting or understanding papers, problems making the techniques
applicable to the Builder, types of information their techniques needed or provided, but not
specific usability problems they had found in the Builder. Each analyst produced a stack of
PDRs, detailed diaries, and a brief written report.

2.4 Specific UEMs

Since these UEMs are evolving, several versions of each method exist in the literature.
Therefore, we must be clear about which version each analyst used in their assessment of
the Builder's specification.

The CA analyst used both (Kellogg, 1989) and (Carroll & Rosson, 1991) as examples of
how to do use the method. He expressed the problems he identified in the "claim - but"
format shown in these papers.

The CW analyst read about several versions of the method, but used the version in
(Wharton, Rieman, Lewis & Poison, 1994). He chose tasks based on the target document,
derived the correct procedures from the specification, and did his walkthroughs alone. A
detailed account of this analyst's experience using CW can be found in (John & Mashyna,
in press; John & Packer, 1995).

The GOMS analyst relied primarily on (Kieras, 1994). He specified the goal hierarchy for
several tasks derived from the target document and made quantitative predictions of
execution and learning time. In addition, Kieras suggests checking the analysis for
"naturalness" of the goal hierarchy. This analyst decided that the questions posed by CW
were a good means of checking "naturalness" so he kept CW's questions in mind as he
examined his GOMS analysis; about 40% of his PDRs were credited to assessing
"naturalness" in this way.

The HE analyst used (Nielsen, 1993) as her primary source. She did an HE herself, and
recruited three additional evaluators: two with CS backgrounds, one in graphic design.
She trained them with (Molich & Nielsen, 1990), and recorded all the problems they
identified and suggestions they made. This analyst did not remove duplicate problems
from the set of raw PDRs. Since HE with several evaluators typically has duplicate
problems, the first author and a colleague examined the raw PDRs, came to a consensus
about duplicates, and removed them. The duplicates were 5% of the total raw PDRs, lower
than we expected, and lower than depicted in other HE writings (e.g., Nielsen & Mack,
1994: p. 27).

The UAN analyst found (Siochi & Hartson, 1989) best for understanding the basics of
UAN, but used the more detailed (Hartson, Siochi & Hix, 1990) as a guide when doing the
analysis itself. This analyst understood that the goal of UAN is to write an unambiguous
specification, not to point out usability problems. However, she wanted to see if the
process of formalizing a prose specification would have the side-effect of identifying
usability problems or design improvements as well.

The analyst who just read the specification repeatedly did not use any particular method.
He was instructed to note in the diaries if he noticed himself using any particular method in

John & Marks
Tracking the Effectiveness of Usability Evaluation Methods

p. 6

his reading, but he did not write down any known UEM. He did record that he read the
specification once through deliberately looking only at whether commands were undoable
or not.

2.5 Results of the UEM analyses

The results of the UEM analyses can be characterized by the usability problems they
predicted. Other measures might also be included in other analyses of these rich diaries,
e.g., the effort exerted by the analysts, in what activities they spent their time, their doubts
and insights about the UEMs, but an analysis of those data is beyond the scope of this
paper (but see John & Mashyna, in press; or John & Packer, 1995, for detailed analyses of
the CW case).

323 raw PDRs were generated by the analyses: 24 by CA, 42 by CW, 44 by GOMS, 127
by HE, 17 by UAN and 69 by Reading (Table 1). Most of the analysts attributed the
detection of these problems directly to their UEM, as opposed to having found them by
reading the specification or other personal judgment. A notable standout is that the analyst
using UAN did not attribute any PDRs directly to the UAN technique itself, but called 94%
of the PDRs a "side effect" of the technique. As discussed above, this is not a surprising
result, as the goal of UAN is to produce an unambiguous specification, not to identify
usability problems.

Table 1. PDRs generated by the analysts and the sources to which they attributed
the PDRs.

UEM Raw
PDRs

number
from
UEM

percent
from
UEM

number
side
effect

percent
side
effect

CA 24 19 79% 0 0%

CW 42 26 62% 4 10%

GOMS 44 32 73% 0 0%

HE 127 111 87% 2 2%

UAN 17 0 0% 16 94%

Reading 69 N/A N/A N/A N/A

TOTAL 323 188 58% 23 7%

John & Marks p. 7
Tracking the Effectiveness of Usability Evaluation Methods

3. Addressing the Predicted Usability Problems

Much of the Builder had been implemented according to the specification, independent of
the UEM analyses. Some changes were made during implementation, by agreement within
the development group.

Given an implementation and a set of predicted problems, decisions must be made about
what code to change. In the real world, the development team as a whole could make
decisions, management or an external customer could set priorities, or individual
developers could decide to change the code under their control. These procedures depend
on the size and complexity of the product and the organizational culture. In our case, the
situation was as follows.

3.1 Development Participant

The ACSE project (which included the Builder) and its predecessors had been in existence
for more than 15 years at Carnegie Mellon University, producing several versions of
novice programming environments currently used in universities across the Unites States
(Miller, Pane, Meter & Vorthmann, 1994). The project was winding down at the time of
our involvement; one full-time developer, Devi, was available to assess the PDRs and fix
the code.

Devi had worked on these systems for almost 10 years. Although he was not an author of
the specification, he contributed to it and had written much of the code. Devi had taken an
HCI course several years prior to this work and had classroom knowledge of all these
UEMs.

3.2 Materials and Procedure

We gave Devi the PDRs, transcribed, printed one to a page, and grouped by UEM that
produced them.4 These included the prose description of the problem, the analyst's
judgments of frequency and severity, and the source of their judgments. Devi handled the
PDRs in the following order: CW, UAN, CA, Reading, GOMS, HE.

Devi recorded his reasoning about why to fix a problem or not on the PDR, extended with
additional questions for that purpose. Devi first judged whether a PDR reported an actual
usability problem of the Builder, a problem with the specification itself, or a problem with
the target document which did not reflect a usability problem with the Builder.

4 A clerical error, not found until after all systems had been built and all usability tests completed,
prevented 32 HE PDRs from being given to the developer. A post-hoc analysis of these PDRs showed
them to be very similar to the other HE PDRs. They spanned all aspects of the Builder, 4 were in portions
of the Builder that are not yet implemented, 7 did not exist in the current implementation because of the
changes introduced in the normal development process, 4 were problems with the specification or analyst's
misreading of the specification, 4 were duplicates of other UEMs' PDRs which had been passed along to the
developer, leaving 13 which might have influenced the design. Devi was kind enough to rate these PDRs
after the fact, and estimated that he would have changed code because of 2 of them, but these changes were
exactly what he actually implemented for the HE version. Therefore, to our best knowledge the HE version
would not have been changed due to these extra PDRs and only the 88 HE PDRs actually passed to Devi
were tracked.

John & Marks p. 8
Tracking the Effectiveness of Usability Evaluation Methods

If Devi interpreted a PDR as an actual usability problem, he recorded whether this problem
existed in the current implementation of the Builder. If so, he recorded how important he
thought it was to fix the problem on a five-point scale (l=not important, 5=imperative). He
recorded alternative ways to fix the problem and rated each on a five-point scale of
difficulty (l=trivial to fix, 3= 1 person/week, 5 = almost impossible to fix). Finally, Devi
recorded his final decision to fix the problem or not, which option to use if there were
alternatives, and a reason for that decision.

Devi then changed the code of the baseline implementation to make a new version of the
Builder. If a predicted usability problem had already been fixed when handing an earlier
UEM, he simply included the new code in that UEM's version of the Builder. Devi
worked on these changes to the code full time for about ten weeks.

3.3 Results and Discussion of Development Participation

Of the 284 PDRs passed to Devi, he thought two contained two problems each, so he
filled out questionnaires for 286 predicted usability problems (Table 2). Of these, Devi
believed that 56 (20%) were not actually usability problems with the Builder. UAN stands
out as having a high percentage of non-problem PDRs (82%) and all of these are problems
with the specification. This result is not surprising, as UAN is a technique for
disambiguating a specification. CW, GOMS and Reading reported relatively few non-
usability problems (5,13 and 6%, respectively, all specification-related). Of the 20% non-
usability problems reported by CA, one third (2 PDRs) were with the specification, one
was a criticism of animation as a learning tool based on reading the analyst had done, half
(3) were introduced when the analyst used the technique iteratively, criticizing his own
design suggestions which were not part of the original design. About two-thirds of the HE
non-usability problems were attributed to the specification; about one-third to the target
document. All of the target-document problems came from the first HE analyst, an English
graduate student concentrating in rhetoric. Two non-usability problems, both generated by
the HE analyst with a CS education, were based on assumptions about memory
requirements of the Builder that Devi felt were incorrect. Perhaps these non-usability non-
specification problems reflect the analysts' background more than HE itself. 230 predicted
usability problems remained to be analyzed further.

All of the analysts found problems with parts of the Builder which were not yet
implemented (NYI). Table 3 shows that CA, CW, and Reading spent 1/4 to 1/3 of their
effort in these areas. (UAN's 100% in these areas is probably an artifact of the small
number of predicted usability problems.) 70% of GOMS's 17 NYI problems were with
the procedure for creating cross-references, possibly reflecting the emphasis that GOMS
puts on procedures and the difficulty of that particular procedure. Only 5% of HE's
problems were in NYI areas and we do not have an explanation for this result.

Table 3 also shows the number of predicted usability problems that had changed during the
normal development process, without the benefit of these UEMs. Most of the techniques
cluster around 30%. CA is lower, at about 16%. (UAN's 0% is probably an artifact of its
low number of predicted usability problems.)

Problems that do not exist in the baseline implementation of the Builder cannot possibly be
observed in think-aloud usability tests, therefore, we dropped them from further analysis.
This left 100 potentially observable predicted problems.

John & Marks
Tracking the Effectiveness of Usability Evaluation Methods

p. 9

Table 2. Devi's judgment of the PDRs passed to him.

UEM Number
PDRs
passed to
Devi

number
problems
addressed
by Devi

number
NOT
usability
problems

percent
NOT
usability
problems

number
of
usability
problems

CA 24 25 6 24% 19

CW 42 42 2 5% 40

QOMS 44 45 6 13% 39

HE 883 88 24 27% 64

UAN 1 7 1 7 14 82% 3

Reading 69 69 4 6% 65

TOTAL 284 286 56 20% 230

Table 3. Predicted usability problems in areas that were not yet
implemented (NYI), or changed by the development team in the normal
course of implementation. The numbers in this figure do not add up to the
numbers in Table 2's last column because both CW and HE had one
problem which Devi said did not exist in the current implementation
without explanation, and GOMS had one problem for which Devi provided
a simple "work-around" obviating the problem in his opinion.

UEM number
of
usability
problems

number
NYI

percent
NYI

number
changed
during
development

percent
changed
during
development

problems
still
existing

CA 19 5 26% 3 16% 1 1

CW 40 13 33% 1 1 28% 15

QOMS 39 17 44% 1 1 28% 10

HE 64 3 5% 19 30% 41

UAN 3 3 100% 0 0% 0

Reading 65 20 31% 22 34% 23

TOTAL 230 61 27% 66 29% 100

John & Marks
Tracking the Effectiveness of Usability Evaluation Methods

p. 10

Table 4 shows the number of changes to the code. Neither CA nor UAN resulted in any
changes. The other techniques persuaded Devi to make between 2 and 7 changes to the
code. HE and Reading had the highest compression ratio, where an average of more than
three problems could be fixed with a single code change, whereas GOMS had a one-to-one
mapping between the predicted problems which led to change and the change itself.
Interestingly, the compression ratio does not account for any of the variance in the
percentage of problems that led to a change, indicating that multiple reasons to make a
change may be no more persuasive than one well-supported reason.

Table 4. Predicted usability problems that persuaded Devi to change the
code.

UEM problems
still
existing

number
led to
code
change

percent
led to
code
change

number
of
changes
in code

CA 1 1 0 0% 0

CW 15 1 1 73% 5

GOMS 10 3 30% 3

HE 41 7 17% 2

UAN 0 0 0% 0

Reading 23 9 39% 7

TOTAL 100 30 30%

4. Usability Testing

The next stage in tracking predicted usability problems is to collect data about their
occurrence with users. Ideally, we would deploy the Builder and observe real users doing
their actual jobs. However, that was not possible and we approximated the ideal situation
with think-aloud usability tests in the laboratory. Such testing is heavily used in industry
and "may be the single most valuable usability engineering method" (Nielsen, 1993: p.
195).

4.1 Tasks

We gave our users five tasks, all within the use-scenario that they were creating course
material for a biology class. These tasks were constructed from an actual biology lesson
built with an earlier version of the Builder (Pane et al., 1996). We included creation and

John & Marks p. 11
Tracking the Effectiveness of Usability Evaluation Methods

modification tasks and exercised the major features of the Builder (text, graphics,
animation, code, table of contents, glossary, bookmarks, etc.). The task set included some
procedures we had failed to exercise in a previous study (John & Mashyna, in press). As a
pragmatic constraint, we restricted these tasks so that all training, data-collection, and
debriefing could be accomplished in 2 hours.

The first task was to create a three-page multimedia document from hard-copy, attached to
an science simulation. This involved cutting and pasting text, pictures and an animation
from other Macintosh applications, and adding entries into the table of contents and
glossary. The second task was to switch page 2 with page 3. The third task was to add
another page, enter another glossary entry, and modify the definition of an existing entry.
The fourth task was to add a final page that included a code fragment and to ensure that
future users of the document could not change that code. The last task was to save the
document in an editable version for the professor and in an exercise version for the
students.

4.2 Participants

Twenty business undergraduates participated in the usability tests, four5 for each of the five
versions of the Builder. All had experience with the Macintosh, were familiar with
Microsoft Word, and knew how to cut and paste between applications. The students
earned extra credit toward class grades for participating in the study. Each participant was
randomly assigned to a version of the Builder, in blocks.

4.3 Apparatus

The tests used a Macintosh Quadra with a 17 inch color monitor, running System 7.5.
MSWord5.1 held source text and pictures; MoviePlayer 1.0 held source animations. Five
versions of the Builder were used: vBL1.2 (baseline), vCW1.2 (built from Cognitive
Walkthrough suggestions), vGMl.O (GOMS suggestions), vHEl.O (Heuristic Evaluation
suggestions), and vRDl.l (Reading suggestions). All sessions were videotaped.

4.4 Procedure & Results

Each participant was given simple skills assessment tasks to demonstrate his or her
proficiency with the Macintosh. The participant had to switch between two applications,
copy a graphic from one application to another, and, after a brief training, copy an
animation from one application to another. The participant was trained how to do a think-
aloud verbal protocol and practiced thinking aloud while playing solitaire.

The participant was then shown a program on the computer screen and told that the Builder
allowed professors to attach course material to programs. This program was a simulation
of fruit fly embryo development. They were given hard-copy and asked to create a volume

' Prior research has shown that using three or four participants in a usability test maximizes the ratio of the
number of usability problems found to the effort involved in running the test (Nielsen & Landauer, 1993;
Virzi, 1990; Virzi, 1992). However, this number is still the subject of debate and can be much higher if
the probability of finding a problem in the interface is very low (e.g., see (Lewis, 1994)).

John & Marks p. 12
Tracking the Effectiveness of Usability Evaluation Methods

that looked like these pages and attach it to the program. They were told that source text,
pictures and an animation were in other applications already open on their screen.

The participants were not given any specific instructions about the Builder. This
instructionless learning paradigm represents how many people begin using new
applications (Carroll & Rosson, 1987).

After completing the first task, the participant was asked to do the second task; after that,
the third, and so on until all five tasks were done. To keep the tasks reasonably short, we
enforced two time limits. First, if a participant articulated a goal and failed to make any
progress toward that goal for three minutes, the experimenter showed the participant how
to accomplish that goal. Second, each task was assigned a maximum duration by
quadrupling the time the second author could perform the task. These durations were
checked with three pilot users. If the maximum duration was reached, the experimenter
stopped the participant and asked the participant to move onto the next task.

This procedure resulted in 20 videotapes, four for each version of the Builder. These
videotapes are the data from which to track the problems described in the next section.

5. Problem Tracking

5.1 Problems to track

We had to establish which predicted problems were potentially observable in the usability
tests. Even though the suite of tasks was created to cover system features, the usability
analysts could predict problems that would never show up in the laboratory environment
we provided. If we were to track these problems, it would give a distorted measure of
predictive power for the UEMs used.

First, many predicted problems concerned the quality of course materials rather than the
Builder itself. For instance, there were several suggestions about making pages easier to
read (e.g., constraining the amount of text on a page, distributing white-space evenly, etc.)
These problems could only be observed with end-users (students), measuring their
understanding of the course content or the time it takes them to come to a threshold of
understanding. Other problems would arise only if the participant were the actual author of
the curriculum. That is, only the true author would need to do things like compare two
alternative layouts; our participants were simply trying to construct an electronic version of
the hard-copy we gave them. Finally, some predicted problems were with features that the
task suite failed to address, despite our careful selection. For instance, we did not ask the
participants to edit a code frame. For these reasons, we judged 33 predicted problems to be
unobservable in our usability tests.

We then combined problems that would be indicated by the same behavior. For instance,
the analyst using CA said "People may erroneously rely on having the undo option
available when it is, in fact, inactive" and the Reading analyst said "In general, all
commands should be undoable by choosing 'undo'." Although not precise duplicates (i.e.,
CA's problem could be fixed by warning the user that undo is inactive), the behavior
indicating the problem involves the user trying to use the undo command when it isn't
active. Combining similar problems reduced our list to 54 problems (Figure 4).

John & Marks p. 13
Tracking the Effectiveness of Usability Evaluation Methods

5.2 Procedure and Results

The second author annotated the 20 videotapes using the MacSHAPA observational
analysis tool (Sanderson et al., 1994). Using the list in Figure 4, he specifically looked for
instances of the 54 predicted difficulties. He adhered to a set of criteria for reporting that a
problem was observed (Figure 3). A second analyst was trained on the criteria with three
problems in each of two videotapes, with feedback on her categorizations. After training,
she analyzed 4 tapes, looking for 11 different problems, for a total of 38 ratings, and had a
82% absolute agreement with the second author's ratings on whether the problems were
observed. A consensus opinion was reached for each of these ratings. The first analyst
had a 92% agreement with the consensus; the second, 89%. Since this inter-rater reliability
is good, each rater did a distinct portion of the remaining problems.

The user articulated a goal and cannot succeed in attaining that goal within 3
minutes (then the experimenter steps in and shows him or her what to do).

The user articulates a goal, tries several things and then explicitly gives up.

The user articulates a goal and has to try three or more things to find the solution.

The user does not succeed in a task. That is, when there is a difference between
the hard-copy document the user was given and the Volume the user
produced.

The user expresses surprise.

The user expresses some negative affect or says something is a problem.

The user makes a design suggestion.

Figure 3. Criteria for reporting that a usability problem was
observed in a videotaped think-aloud usability test.

It is important to note that we used a different procedure than work comparing the problems
predicted by a UEM to those observed in a usability study. That work typically looks for
all problems that a user has, rather than concentrating on verifying predicted problems
(e.g., John & Mashyna, in press). Our procedure is different because our goal is to track
predicted usability problems through the development process rather than to compare
techniques. Our procedure reliably detects whether a predicted problem is experienced by
users but it will not discover usability problems which the UEM does not predict.

The results of the videotape analysis are presented in Figure 4. A one-line summary of
each problem gives a sense of the content and range of the predictions. The sources of
each prediction are listed in column 3. All 54 problems were tracked in the videotapes of
the baseline version, indicated by a number appearing in every row of that column.
Problems were tracked in the other versions only if a code change was made attempting to
fix the problem. A number in the last four columns indicates that a problem was tracked in
that version; a dash indicates that it was not.

ra
E
0

c
TJ
CO

1 , 1 i , 1 , , 1 I i o , 1 1 ■ I 1

xa 0
o
i_
Q.

CC

CO

s 1 1 ■ I ■ 1 1 . 1 8 g l . 1 1 1 i 1 , ,
O)
c
'>
CO m

SZ 5>
TJ Q 1 I

1
I ■ 1 1 ' 1 ■ l l ■ 1 1 1 i 1 1 1

0 CO

a)
CO
Xi
o
CO

0
co
3

8
1 ■ 1 ■ ■ 1 1 ' ' 1 o ' CM - CM M- ■* 1 ' 1

0

O
_c
0
CO

o CM T- o o o o o o T- o ,- CM ■<t T— ■* ■* o CO T™

d CO
z CO

TJ ■*
CD *-»
O ^

O
CM

CO lO m
CM

CD Y
o
t—

r 1*
_ CD CO
CO ^- <*-
l— ■ ■

,_ CM
CM CM CM lO CD

W
-1

1
W

-1
6

W
-1

8
O

M
S-

1 o
CM

lO CD CD ._ J2
CM CM CO «O ^ CO

9
CO

o CD
i_ < <T?

1 1

< LU < < < < <
1

< < TJ T3 ^ £ £ ^ £ £ zi £ £ ^ T?T? ^ 5
a. c Ü Ü CC Ü X ü ü Ü Ü Ü Ü Ü CC CC Ü ü Ü Ü Ü Ü ü ü ü (5 o ü ü Ü CC CC Ü a O

o

CO
3
C
0

E
o

CO
c

0

CO
ra
c

"co 0
N

0

CO
CO
a. ■d

4-»

TJ
0
CO
O

o
'"5
CO 0

E
0
a.

0
SZ

3

c
'55 o a.

a.
o
0

CO
**—

o 4-^ o ■4-* >, o o Ü CO co
0 CO Ü 3 ■D +-» CO c 0
Q. x:

0
x>

CO CO CO CO 0 c E
c
0
x:

CO

o
1_
l_

0

5 w 0 0 v.
0 0

3
C

3
O) CO

■t—»
0
en

o
o

CO
0

CO _CD
co
3 0

0

E
0
V)

c
'sz 0

o **—
>.
CO

E

X
0
a.

c
co
3
C

TJ
0
CO
3

E

o
0 ra

c

co

O
O

c
■>
CO
x:

C
g

"co
E
IH.

O

c

o

CO
ex
c
o

c
0
c

4-<

T3
LU c

'co

CO

o
TJ c
3

>>
c
o
0

x: *-•
E
2

0
CO
3
CO
Ü

><
CO

E
co
0

0

O
CO
c
0

i_
0
CO
3

0
x:
■*■■»

TJ
C
CO

E
o
o
o
o
0
Xi

CO

o
Ü

0
XI

>.
CO

E

CO

C
0
3
IT
0
L. »•—
*-»
CO o
E

CO
XI
O
O

CO
CO
CO

CO
3 »*-
c
o
Ü

0
xi

TJ
3

c
o

"co
0 >
0

o
Q.
X

c
CO
x:
V.

0
SZ
4-»
CO ^_
-a
0

o »*— c

o
0
Q. >.

■*-»

•«■»1

CO

■D
L.
CO *^-
o
o
CO

3
C

3
n
£
■a
c
»^
o

to
c
o

CO
c
g

o
Ü
o
0

X3
CO
\r

C

0
X2
CO

T3
_C
*♦—
+-•
o
c

3

c:
o
o
co

0
£
3
o

o
■*-•

0

TJ
3
O

CO

x:

0
X)

t»
3

£

CO

$
CO

1—

CO *^
o
o

4-»

E
CO

>>
CO

E
co
0

£
L.

xi
"5

0
x:

o O
Ü

LU

0

N
'co

SZ

5
0

E o

sz

"5
TJ
C

>

0
c
CO

c

k-

0
CO

0
CO

»•— .a CO i_ *-' „ CO sz >» 0) "D o CO 3 Ü
o
H
CO

CO

"5

E

c
o
co
0

TJ

■g-rf

TJ
C
CO

o
o

xi
o
o
0
r-

o
CO

c

o

0
X)

TJ
3
O

co
0
E
CO
1_ »*—

TJ
O
JZ

0
E

«3 x:

0

"eö
3

■D
■>

T3

CO
Ü

C

C
LL

0
x:

CO

x:
o

SZ

c
T3
0

"co
"o
o
CO

E
E
o o

c"
o
'S
CO

o

0
E
CO

0
n

c
CO

TJ
C o

CO

o
o
>. c
CO

E

0 CO CO

o
TJ
c

c
CO

E

CO 0
co

C o
c

cz 5 o
c

o
c

I
0

o
»1— CO

CO

© "co
0

0
c

x:

o
k.
Q.

»i—
O

CO

E
E

x:
tin
c
'N
"to
0
1—

0 >

3

C
o
>.
0

0
a.
o

c
o

T>

CO
E
o

x:
4-»

x:

CO

o
TJ
c

i—
CO
XI
o
o

4-»

CO

o

sz

>
CO
c
o

"■*-»

CO

>

o
>.
i
>»
CO
CO
0

0
XI
••^
co
3
E
CO
0

E
CO

CO
0
o

T3

T3

CO
o
XI g.

E
0

0
O)
CO

D_

O
1-

co
0
XI

c
CO
3 »*-
c

0
S3
*-»
o c

1
Ü

CO
a.
0
E
3
O
>
TJ
TJ
<:

1_
Ü

o *^
CD

3
TJ
0
Ü
O
1_

o
o

TJ
c
3

C
o
c

0 >
3 ♦-•
C

o
c
CO

C

!^
u
O
c
3

CT
C

1^
Ü
o
_l

3 Ü 0 o o £ o o CO o o CO o o CO
CO < D_ m co H CO z Z LL Ö CD ^ Ü 1- Q_ Ü •4-»

X)

2 Ö
z CM CO ■* lO CO Is«. 00 a> O i- CM CO ■* m CD N. CO a> o

li- T—

"~
T™ 1— T~ CM

CM

3
ffl

1
o
c
o

>
e
e

5

0)
1—H

1
u
U

bo
Ö
o
Ö

•a
u
Q< x
u
»9
l-i
U
i/l
3

U
.0

3

a
OH

r3
■9
V)
3
u

-t-J
O

'•&
U
&
o

3

3

CO

CO CM CM

■D
CC

I

CC

CM
w

i

-o
CC

CO
I

U)
T3
CC

CO

O)

CO
co
CO
o
O)

CD

c
CC

Ü

CM

CD

CD

C

c
CO .c
Ü
>. n
O
o

0

CD

c
0)

&
CO
CO
CO
o
o
c
CO

X
CD

c
CO

CM CO w

John & Marks p. 16
Tracking the Effectiveness of Usability Evaluation Methods

6. Discussion and Conclusions

Given the predicted problems, Devi's judgments of those problems, and the user tests, we
can fill in the effectiveness tree for this development case. Before discussing the tree and
its implications, we will present the limitations of our study to qualify the conclusions we
draw from the tree. We also lay out some directions for future research.

6.1 Strengths and Limitations of the Data

Many aspects of this study may generalize to real-world use of UEMs, but others limit
generalization.

The application and specification. These UEMs were developed in the era where the
paradigmatic human-computer interaction involved an office worker in front of a PC.
Since the Builder fits in this paradigm it may be more suited to these UEMs than other
applications involving virtual reality, for instance, or collaborative work. The specification
used prose and figures. Although such specifications are widely used, these results may
not generalize to other forms, like formal specifications or prototype-as-specification.

The problem prediction process. Since this work follows a case-study paradigm, not an
experimental one, we had a single analyst using each UEM. It is difficult to attribute credit
or blame to the UEM itself as opposed to the analyst's background without deeper analysis
of the diary data produced in the study (e.g., see John & Mashyna, in press). Therefore,
we will not make strong comparisons between techniques, but only look for dominant
patterns in the data.

These analysts were novices at the techniques. While novice analysts are not uncommon in
real-world practice (Dillon, Sweeney & Maguire, 1993), these data do not reflect the best
work of analysts expert in a particular UEM.

These analysts were not developers of the system they were critiquing. Although many
companies bring in usability analysts as consultants, many other projects include usability
analysts as full team members. It is unclear whether additional knowledge of the
underlying system would produce less naive predictions or fewer criticisms because of the
investment the analysts themselves have made in the design.

Finally, the problems were generated with specific versions of the UEMs (section 2.4).
Most of these methods are under development and the performance displayed here may not
exist in newer versions of the technique.

The development involvement. There was a single developer making all the judgments and
all the code changes, under a deadline. As a major contributor to the design and the code,
Devi therefore had the same background as programmers on other real-world development
projects. However, he was working alone on these changes after development on the
project had essentially stopped. It is unclear whether more programmers, or more time,
would have produced a large quantity or higher quality design changes. In addition, Devi
did not have the opportunity for dialog with the analysts. In a situation where the analysts
are part of the design team, perhaps these techniques would be more persuasive.

John & Marks p. 17
Tracking the Effectiveness of Usability Evaluation Methods

The usability tests. Our usability tests have the same limitations as many conducted for
real-world products. Our tasks were short so that the tests could be of reasonable duration.
Our participants had similar computer experience as target users, but were not domain
experts or actual authors of educational materials. There was no extensive instruction or
practice with the system. More training and longer tasks might have uncovered problems
that only come with scale or expertise (for instance, the differences in expert performance
time that GOMS is designed to predict, e.g., Gray, John & Atwood, 1993; John & Kieras,
in press). In addition, more users might have uncovered more problems in general (Lewis,
1994; Virzi, 1992).

6.2 Effectiveness tree

Figure 5 shows the effectiveness tree for our data. The numbers in each box indicate how
many predicted problems are in the category named by the box and the path to it. The
UEMs listed predicted the problems in each box. For instance, the box at the top left says
that 6 problems predicted by CW, HE or Reading, were observed in the baseline user tests,
led to changes in the code, and fewer people displayed those problems in the user tests of
the revised Builders.

Slightly less than half of the 54 problems were observed in the usability tests. Of those,
50% led to changes in the code, and about one half of those changes actually resulted in
fewer observations of users having troubles. Another quarter had the same number of
users with problems and the last quarter had more observations of users with difficulties
than the baseline version of the Builder. Of the predicted problems that were not observed,
about one quarter led to changes in the code, all of which produced the same number of
user problems in the revised Builder as in the original Builder.

Because of the limitations of our study discussed above, we focus on big patterns in these
data rather than small differences. For example, UAN is totally absent from this chart.
Although the analyst using UAN predicted some usability problems as a side effect of the
technique, none survived in the tracking process to this stage; most were identifying
problems in the specification. This is evidence that UAN (circa 1990) is not a technique for
finding usability problems, but for disambiguating a specification, as advertised.

A striking pattern is that relatively few of the predicted problems ended in the most
desirable outcome, ol - Effective change. Only 11% of these problems were observed and
led to code changes that gave fewer users difficulty. Half that number ended in outcome
o4, which took considerable coding effort and resulted in an inferior system. This is
evidence that the UEMs studied here are not as effective as the HCI field would like and we
have a dire need for more research into UEMs.

Other patterns suggest that the situation is not hopeless. First, no problems ended in 06, an
outcome that also results in an inferior system. Second, 80% of the problems that were not
observed also were not changed (o7), a higher percentage than observed problems that did
not lead to code changes. Perhaps there was something about these problems, or the way
they were presented, that led the developer to decide not to change the code. If this
"something" could be discovered and codified, it could be incorporated into the UEMs to
reduce these false alarms.

Another pattern is that most outcomes are populated by problems from most of the UEMs.
All UEMs predicted some problems that were observed and some that were not. All but

John & Marks
Tracking the Effectiveness of Usability Evaluation Methods

p. 18

CA persuaded the developer to change the code sometimes and not others. The numbers
are too small in the design-change effectiveness column to be confident in specific results
(i.e., we would NOT want to conclude that HE never produces worse designs, GOMS
never produces better designs, and CW and Reading always produce both better and
worse). However, the fact that no design-change effectiveness outcome is populated by a
single UEM suggests that all techniques have strengths that further research could mine and
limitations that it could reduce. Also, just reading the specification repeatedly without
using any particular UEM populates the outcomes as much as do the more structured
UEMs.

S
Fewer Problems

CW, HE, Rdg

13
Changed

CW, GOMS, HE, Rdg

/

26
Observed

CA, CW, GOMS, HE, Rdg

^

Same Problems
CW, HE, Rdg

54
Predicted
Usability
Problems

CA, CW, GOMS, HE, Rdg

13
Not Changed

CA, CW, GOMS, HE, Rdg

More Problems
CW, GOMS, Rdg

\

6
Changed

CW, GOMS, Rdg

28
Not Observed

CA, CW, GOMS, HE, Rdg

N*

6
Same Problems

CW, GOMS, Rdg

22
Not Changed

CA, CW, HE, Rdg

More Problems

Predictive
Power

Persuasive
Power

Design-
Change

Effectiveness

01 - Effective
change

02 - Wasted
effort

03 - Costly in effort
and quality

04 - Missed
opportunity

05 - Wasted
effort

06 - Costly in effort
and quality

07 - Wasted
effort

Figure 5. The effectiveness tree for our data.

Figure 6 shows the analysts' average frequency and severity ratings for each problem
category in the effectiveness tree, as well as Devi's average ratings of importance of the
problems and difficulty of changing the code. The number of design suggestions made by
the analysts and number of those suggestions actually implemented by Devi are also
shown. These numbers are descriptive statistics only; this study does not have sufficient

John & Marks
Tracking the Effectiveness of Usability Evaluation Methods

19

Key
No. of problems
and category

Analyst
suggestions

No. followed

Analysts frequency
Analysts severity

Devi importance
Devi difficulty

26
Observed 3.26

3.06

1.94
3.18

54
Predicted
Problems

3.22
2.88

1.63
3.29

28
Not
Observed

3.17
2.66

1.26
3.47

13
Changed

13_
6

6
Changed

22
Not
Changed!

If5

s
3.29
3.35

2.41
2.53

3.60
2.80

1.86
2.86

3.08
2.63

1.13
3.90

6
Fewer
Problems

IN

4
Same
Problems

Ü

3
More
Problems

6
Same
Changed

3.00
3.00

1.80
2.40

4.00
3.83

3.50
2.83

2.60
2.80

1.80
2.20

3.60
2.80

1.86
2.86

Predictive Persuasive Design-
Power Power Change

Effectiveness

Figure 6. The effectiveness tree with analyst's average frequency and
severity ratings, Devi's average importance and difficulty ratings and the
number of analyst's design suggestions made and implemented.

statistical power o produce significant inferential results,
the biggest trends (shaded).

Therefore, we again look only at

In general, Devi's importance rating follows the analysts' severity ratings, though on a
lower scale. For instance, the analysts and Devi all rate the observed problems slightly
more important (or severe) than the unobserved problems.

John & Marks p. 20
Tracking the Effectiveness of Usability Evaluation Methods

The shaded items in the persuasiveness column show that the problems which led to code
changes were more important and less difficult, on average, than the problems Devi did
not choose to redesign. This may be an indication of wisdom on Devi's part, or a form of
cognitive dissonance (i. e., he changed it, so it must have been more important).

In the final outcomes, the problems that were most important to fix led to solutions that did
not improve performance. This does not seem to be due to Devi not following the
analysts' design suggestions, however. When he did follow their suggestions,
performance both improved and got worse (open circles). Again, these numbers are
descriptive, not inferential, so these trends should be viewed as hypotheses to test with
further research rather than conclusions to apply in practical design environments.

6.3 Lessons learned and future work

Despite the cautions in section 6.1, we believe there are still several lessons that we can
learn from this work.

These UEMs are not as effective as HCI would like. If they were highly effective, there
would be a much higher percentage of problems resulting in an effective change, instead of
populating the outcomes so evenly.

There is no particular UEM to blame for this result. All UEMs populated most of the
outcomes, with two exceptions. UAN (circa 1990) did not predict trackable usability
problems, but it was not intended as a tool for prediction. CA (circa 1991) did not lead to
any design changes. We speculate that its "claim...but" format, presenting both advantages
and disadvantages of a design, makes it difficult to see a clearly better way to implement the
system.

Just reading a prose specification many times seems to be as effective as more structured
UEMs at detecting and fixing novice-user problem. This reading might require someone
not involved in the actual design, as was our Reading analyst.

All of the lessons of this experience should be tested with further research. The HCI field
needs to find productive partnerships between research and development to do actual
experiments on UEM use. We need real specifications, real products, real development
teams and real users, in sufficient number, to have generalizable results. Other fields, like
medicine and education, have well-established methodologies to assess processes; we need
to commit the time and resources to follow their lead.

Finally, the effectiveness tree presented here provides an interesting framework for
evaluating UEMs more broadly than simple predictive power. However, this framework
needs to be exercised on more data and expanded to include usability problems missed by
analytic UEMs. In addition, quantitative measures of predictive power, persuasive power
and design-change effectiveness need to be established so that many studies can produce
comparable data.

Acknowledgment

We would like to thank the anonymous Devi for his efforts, and Matt Mashyna for his
continuing support.

John & Marks p. 21
Tracking the Effectiveness of Usability Evaluation Methods

References

Butler, K. A., Jacob, R. J. K., & John, B. E. (1994). Introduction and Overview of
Human-Computer Interaction, Companion Proceedings of ACM CHI'94
Conference on Human Factors in Computing Systems, (Vol. 2, pp. 351-352).
New York: ACM.

Carroll, J. M., & Rosson, M.-B. (1987). The paradox of the active user. In J. M.
Carroll (Ed.), Interfacing thought,. Cambridge, MA: MIT Press.

Carroll, J. M., & Rosson, M. B. (1991). Deliberated Evolution: Stalking the View
Matcher in Design Space. Human-Computer Interaction, 6(3-4), 281-318.

Dillon, A., Sweeney, M., & Maguire, M. (1993). A Survey of Usability Engineering
Within the European IT Industry - Current Practice and Needs, Proceedings of the
HCI'93 Conference on People and Computers VIII, (pp. 81-94).

Gallagher, S., & Meter, S. (1993). Volume View Interface Design : School of Comptuer
Science, Carnegie Mellon University.

Gray, W. D., John, B. E., & Atwood, M. E. (1993). Project Ernestine: Validating a
GOMS Analysis for Predicting and Explaining Real-World Task Performance.
Human-Computer Interaction, 8(3), 237-309.

Gray, W. D., & Salzman, M. C. (1996). Damaged merchandise? A review of
experiments that compare usability evaluation methods. Manuscript submitted for
publication.

Hartson, H. R., Siochi, A. C, & Hix, D. (1990). The UAN: A user-oriented
representation for direct manipulation interface designs. ACM Transactions on
Information Systems, 8(3), 181-203.

Jeffries, R, Miller, J. R., Wharton, C, & Uyeda, K. M. (1991). User interface
evaluation in the real world: A comparison of four techniques, Proceedings of CHI,
1991 (New Orleans, Louisiana, April 28 - May 2, 1991). New York: ACM.

John, B. E., & Kieras, D. E. (in press). Using GOMS for user interface design and
evaluation: Which technique? ACM Transactions on Computer-Human Interaction.

John, B. E., & Mashyna, M. M. (in press). Evaluating a multimedia authoring tool with
cognitive walkthrough and think-aloud user studies. Journal of the American
Society of Information Systems.

John, B. E., & Packer, H. (1995). Learning and using the Cognitive Walkthrough
Method: A case study approach. Proceedings of CHI, 1995 (Denver, Colorado,
May 7-11, 1995), (pp. 429-436). New York: ACM.

Kellogg, W. A. (1989). Qualitative artifact analysis (Research Report RC 15768): IBM
T. J. Watson Research Center.

John & Marks p. 22
Tracking the Effectiveness of Usability Evaluation Methods

Kieras, D. E. (1994). A guide to GOMS task analysis (Spring 1994): University of
Michigan.

Lewis, J. R. (1994). Sample sizes for usability studies: Additional considerations.
Human Factors, 36(2), 368-378.

Marks, S. J. (1996). Exploratory evaluation of usability inspection technques.
Unpublished Undergraduate Senior Thesis, Carnegie Mellon University.

Miller, P. L., Pane, J. F., Meter, G., & Vorthmann, S. (1994). Evolution of Novice
Programming Environments: The Structure Editors of Carnegie Mellon University.
Interactive Learning Environments, 4(2), 140-158.

Molich, R., & Nielsen, J. (1990). Improving a human-computer dialog.
Communications of the ACM, 33(3), 338-348.

Nielsen, J. (1993). Usability Engineering. Boston, MA: Academic Press.

Nielsen, J., & Landauer, T. K. (1993). A mathematical model of the finding of usability
problems, Proceedings oflNTERCHI, 1993 (Amsterdam, April 24-April 29), (pp.
206-213). New York: ACM.

Nielsen, J., & Mack, R. L. (Eds.). (1994). Usability Inspection Methods. New York:
John Wiley.

Pane, J. F., Corbett, A. T., & John, B. E. (1996). Assessing dynamics in computer-
based instruction, Proceedings of CHI, 1996 (Vancouver, BC, April 14-18, 1996),
(pp. 197-204). New York: ACM.

Rieman, J. (1993). The diary study: A workplace-oriented research tool to guide
laboratory efforts, Proceedings oflNTERCHI, 1993 (Amsterdam, The
Netherlands, 24 April - 29 April, 1993), (pp. 321-326). New York: ACM.

Sanderson, P. M., Scott, J. P., Johnston, T., Mainzer, J., Wanatabe, L. M., & James,
J. M. (1994). MacSHAPA and the enterprise of Exploratory Sequential Data
Analysis (ESDA). International Journal of Human-Computer Systems, 41(5), 633-
681.

Siochi, A., & Hartson, H. R. (1989). Task oriented representation of asynchronous user
interfaces, Proceedings of CHI, 1989 (Austin, Texas, April 30 - May 4, 1989),
(pp. 183-188). New York: ACM.

Virzi, R. A. (1990). Streamlining the design process: Running fewer subjects,
Proceedings of the Human Factors Society 34th Annual Meeting, (pp. 291-294).
Santa Monica, CA: Human Factors Society.

Virzi, R. A. (1992). Refining the test phase of usability evaluation: How many subjects
is enough? Human Factors, 34(4), 457-468.

Wharton, C, Rieman, J., Lewis, C, & Poison, P. (1994). The Cognitive Walkthrough
Method: A practitioner's guide. In J. Nielsen & R. L. Mack (Eds.), Usability
Inspection Methods. New York: John Wiley & Sons, Inc.

